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ON THE DERIVATION OF THE FREQUENCY FUNCTION OF
SPACE VELOCITIES OF THE STARS FROM THE
OBSERVED RADIAL VELOCITIES.

V. Ambarzumian.

(Communicated by Sir Arthur Eddington)

One of the most important problems of stellar statistics is the derivation
of the frequency function of the space velocities of stars of various spectral
types and of different absolute magnitudes in our neighbourhood. The direct
solution of this problem requires the knowledge of the space velocities of
a great number of stars. The derivation of the space velocity of a given
star is possible only in the case when three different quantities are measured :
the radial velocity, the proper motion and the parallax. These quantities
are measurable with different relative degrees of accuracy and are exposed
to systematic errors of quite different kinds. For some important groups
of stars (for example B-type stars) we have very few reliable individual
parallaxes. In general, the number of reliable parallaxes is generally small,
and comparatively few stars with known radial velocities have known
parallaxes.

Therefore several writers have made the attempts to obtain some know-
ledge about the distribution law of space velocities from the radial velocities
alone. However, in every case some more or less arbitrary form of this
law was assumed, and the problem was restricted to the finding of numerical
values of some constant parameters entering in this form of distribution
law. In the majority of cases these constants are the elements of the velocity
ellipsoids.

Owing to the relative uniformity of the catalogues of the radial velocities,
the results of the statistical investigations based on them are almost free
from the influence of systematic errors.

It seems desirable, then, to try to solve the problem of derivation of the
frequency function of space velocities from the distribution of radial velocities
without making any hypothesis about the form of this function.

So far as it is known to the writer, this problem not only remains yet
unsolved, but is not even discussed in any detail. The purpose of the
present paper is to derive the general formula which enables us to compute
the frequency function of space velocities from the distribution of radial
velocities.

It will be shown that the frequency function of the space velocities is
the solution of an integral equation. In this equation the observed frequency
function of the radial velocities for the different parts of the sky enters as
the known function. We give below the derivation of the equation and
its solution.

The Fundamental Assumption.—We shall assume that the different
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elementary volumes of space in our neighbourhood have practically identical
frequency functions of the space velocities. In actual cases, when relatively
rare types of stars (for example Cepheids) are considered, it is necessary to
consider also the distant stars, since the number of stars of such types in
our neighbourhood is very small. In such cases some corrections for the
difference between the frequency functions in various parts of the galaxy
are required. The actual process of introducing these corrections is beyond
the scope of the present paper. We suppose that the radial velocities of a
sufficiently large number of near stars situated in different parts of the sky
are given, and our aim is to derive the frequency function of the space
velocities from these radial velocities.

We shall consider first the two-dimensional problem. It is of special
interest, since some types of stars are strongly concentrated to the galactic
plane and the z-components of their velocities are small.

The Two-dimensional Problem.—If the stars are distributed over a plane
and we are situated in the same plane, we may measure for each star the
radial velocity V' and its apparent position or azimuth, reckoned from some
fixed direction. In the case of the stars of high galactic concentration the
role of such azimuth is played by the galactic longitude. Let f(V, a)dVda
be the number of the observed stars with azimuths between a and a+da
and with radial velocities between 1”7 and V' +dV. The function f(V, o)
is to be obtained from the lists of the radial velocity stars. If, further,
n(a)da is the total number of the observed stars in the directions between
a and a+da, we have

n(a) :j:f(v, a)dV.

Let (¢, 1) be the unknown frequency function of true velocities. Accord-
ing to the definition, ¢(¢, n)dédn is the relative number of stars for which
the velocity components fall within the limits ¢ and £ +d¢, n and 7 +dny.
We have

| an] e mae=r.

Among the observed stars with the azimuths confined within the interval
(a, a+da) we have n(a)dad(é, n)dédy stars, which have the velocities con-
fined within the element dédy of the ““velocity plane” &7.

We may direct the £-axis to the azimuth a =o0. Then it is clear that
all stars observed in the azimuth o for which the velocities lie within the
strip S of &n plane (see fig.) have the radial velocities lying between V' and
V+dV. 'Therefore from n(a)da stars within the interval (a, a +da),

nla)da)] g(e, mdédy

stars will have the radial velocities confined between ¥V and V+dV. The

integration is carried over the strip (S), perpendicular to the direction a
and with the width dV.
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On the other hand, we have denoted the number of such stars as
f(V, a)dVda.

Therefore we have the equation
AV, )V =n(e)] ¢, . (1)
(8

1

~=

Il

RN

Let us introduce under the sign of the integral instead of & and 7 the
new co-ordinates :
& =¢ cos a+msin a,

’

7' = —§sin a+1 cos a.
It is clear that §’ within the strip (.S) varies between V" and V +dV, and '
varies between — oo and + 00. Therefore

V+av

J, e, mdedn - |

dg’J H(&' cos a— 7' sin a, £ sin a+ 7' cos a)dy’.
14 —o

If we divide the equation (1) by 7n(a) and set

P o SO ST
n(a) j AV, a)dv

we obtain the equation

F(V, a)= [ &(V cos a—n'sin a, Vsin a+17' cos a)dy’. (2)

The left-hand side of this equation may be obtained from the counts
of stars in the radial-velocity lists.
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Returning to the old co-ordinates ¢ and 7, we may write the equation (2)
in the form

F(W, ) =] s, G

where the integration is carried over the straight line (L) defined by mean
of equation
£cosat+msina=V, (4)

and ds is the element of this line.

The equation (3) expresses the following problem :—

The value of the integral (3) for every straight line of the &v) plane is given
as the function of the parameters V and a, defining the straight line. The
integrand ¢(&, ) is to be found.

The solution of this problem is comparatively simple. Let us introduce
in both parts of (2) instead of V' the expression

V =xcos a+ysina+ W, (5)

where x, y and W are some arbitrary parameters. Then we can rewrite
(2) in the form

F(xcosa+ysina+ W, a) :j $(x cos? a+ysin acos a+ Wcos a—n'sin a,
x—éoos asin a+y?sin? a+ Wsin a+ 7%’ cos a)dy’.

If we introduce the new variable of integration
n'=U-xsin a+7y cos a, (6)

our equation takes the simple form

F(xcos a+ysin a+ W, a) =j d(x+ W cos a—Usin a,
y+ Wsin a+ U cos a)dU. (7)

Multiplying both parts of this equation by da, integrating between o and
2w and changing the order of the integration on the right-hand side, we find

27

27 0
j F(x cos a+ysin a+ W, a)=J- de $(x+ W cos a—Usin a,
0 —® 0
y+ Wsin a+ U cos a)da. (8)
Now it 1s easy to see that the integral

277
(D:j d(x+Wcos a—Usin a, y+ Wsin a+ U cos a)da, (9)
0

depends only on x, y and /2 + 2. In fact, if we introduce in (9)

W =G cos B}

U~-Gsin B (10)

we obtain

® =jzﬂgb[x+ G cos (a+B), y+ G sin (a+ B)lda,
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and it is obvious that this integral depends only on x, y and G = /12 + 2

and is independent of B = arctg%.

Therefore we may write simply :

21
O(x, y, G) =j $(x+G cos a, y+ G sin a)da (11)
0
and
j F(x cos a+ysin a+ W, a)da=j D(x, v, G)dU. (12)
0 —®
However,
GdG
dU:——:,
VG2 - W2
and we may rewrite (12) in the form
2 ®© GdG
F(x cos a+ sina+W,ada=2j d(x, y, G)——. I
L ( y ) 0@y C) e (13)

This equation is an integral equation of Abel’s type for the function ®(x, y, G),
and its solution is given by

11.d (> Wdw "
() == — i .
(%, v, G) e dGL \/W2~G2J‘o F(x cos a+ysin a+ W, a)da. (14)
We have, according to (11),
(D(x’ Y, O)=27T(i5(x7 y)’ (15)
and we may rewrite (14) in the form
I 1 4 WdWw
__ 1y A_j _ Wal
¢(.X’, y) 2772G1_I>n()GdG g\/WZ_GZF(x’ 2 W)7 (16)
where the function
F(x, vy, W)=j F(x cos a+ysin a+ W, a)da (17)
1]

may be obtained from the observations. After some algebra we can reduce

(16) to the form
1 (™1 dF(x,y, W)
b(x, ¥) = - Z‘WJO AW (18)

This equation gives us the solution of our problem. The numerical
calculation of F(x, y, W), when F(V, a) is given, may be carried out with-
out difficulty.

We have actually applied our formulz to the radial velocities of B-type
stars observed in the galactic belt £ | | < 20°, and the results of this applica-
tion are in satisfactory agreement with the velocity distribution derived from
the direct counts of the known space velocities.

The details of this application will be given elsewhere.
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The Three-dimensional Problem.—In the case of the three-dimensional
problem we may derive from the catalogues the number of stars observed
within the given solid angle dw in the given direction, having the radial
velocity confined within the limits V' and V+dV. Let us denote this
number by f(V, [, b)dw, where [ and b are galactic longitude and latitude.
If, further, n(l, b)dw is the total number of observed stars in the same solid
angle, we shall have

mab)=jﬂv;amdv. (19)

As in the case of the two-dimensional problem we have the following

relation between the frequency function of the space velocities ¢(¢, 9, {) and
the observed function f(V, [, b) :—

F 10V =n, 0)|| 96, 7, Ddsdnat, (20)
()
where the integration is extended over the volume (Q) of the ¢én{ space
confined between two parallel planes, which are perpendicular to the direction
(, b) and have the distances " and IV +dV from the origin.
Dividing (20) by #n(l, b), we can bring this equation after some trans-
formations to the form

F(V, 1, )= |46 7, Do, (21)
where @
f(V, 1, b)
Huam:7ﬁ37, (22)

and the integration is extended on the plane (X), perpendicular to the direction
(/, b) and distant V' from the origin.
The equation of this plane is:

£coslcosb+nsinlcosb+{sinb="V. (2)

If we introduce the polar co-ordinates p and ¢ in the plane (X) with the
origin at the point,

E=Vcoslcosbh; n=Vsinlcosb; { =V sin b,
we shall have for the points of this plane

&=V cos [ cos b+p(a, cos 8+ B; sin 0),
n =V sin/cos b+p(a, cos 0+ B, sin 6),
{=V sin b+p(az cos §+ By sin 0),

where the coefficients a4, a,, az and By, B,, B; satisfy to the conditions

aq, cos [ cos b+ a,sin lcos b+ aysin b=o,
By cos [ cos b+ B, sin [ cos b+ B sin b =o.

ayBy + asfy + agfy =o.
o>+ o+ 0g® =1 ; Bi%+ B2+ B =1.
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Now we can rewrite the equation (21) in these co-ordinates:

oc 29

F(V, 1, b) = j pdpj $(V cos I cos b+p(ay cos 04 B, sin 6),
0

0
V sin I cos b+ p(a, cos 0+ B, sin 0),
V sin b+p(ag cos 0+ B4 sin 0))d0.

Integrating over all directions and changing the order of the integration
on the right-hand side, we obtain

J-F(V, I, b)dew =j®pdp, (23)
where
27

® =jd¢uj é(V cos I cos b+ p(ay cos 0+ B sin 0),

0
V sin I cos b+ p(a, cos 0+ B, sin 0),
V sin b+ p(ag cos 0+ B, sin 0))d0.

If we introduce the new parameters
V =Gy, ; pcos 0 =Gy,; psin 0 =Gy;; Y2ty +ysi =1,

the integral @ takes the form

) =jd3j¢(G(yl cos [ cos b+yy0q+v3f),

G(y, sin [ cos b+yy05+v5Ps),
G(yy sin b +ysa;5 +v3f3))dw,

and it may be shown that it depends only on G. We may write
O(G) = 277j¢(G cos I cos b, Gsin I cos b, G sin b)dw ; D(0) =87%¢p | 0,0,0) (24)

We have now
G*=V2+4p%; pdp =GdG.

Therefore
JF(V, l b)a’w:j GG (25)
14
and
® - I—dJFVZb)d (26)
=~ yap)fW, L byde. 2
Comparing (26) with (277) we find
qSooo—I(I)o— lim — deVlbd
(o, o, )*8772 ()_"VIEOVEI—/ ( , [, b)dw.

Thus we may find ¢(o,0,0). In the same way after some lengthy
algebra we obtain
1 1 d

E,n ) =——— —=—\F(§coslcosb+msinlcosb+{sinb+ W, b)dw.
8w W dW,
T
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